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wA, respectively, with the damped system. Hence, the
damped system can be solved by Holzer’s Table 1, which
will be called the simple (damped) Holzer table (because there
is no imaginary number j in its heading) and for which the
parameter of the table is necessarily the eigenvalue in the
form A1,2 = —h :l:jwp.

If the steps followed for the solution assumption ¢ = e
are performed for the solution assumption ¢ = e/, Holzer’s
Table 2 will be obtained ultimately. It will be called the
complex (damped) Holzer table; its parameter is the eigen-
value in the form A, 2 = jh = wp.l In the case of the un-
damped system, s; = w; = 0 in the tables and 2~ = 0 in the
eigenvalue. If in this case the eigenvalues A = =+jw, and
A = =+w, are applied to Tables 1 and 2, respectively, the
headings of both of these tables will be reduced to the head-
ing of the ordinary Holzer table for undamped systems.

Tablel Simple Holzer table for the calculation of damped
linear systems; parameters: a) for free vibrations, A =
—h=*= jwp, and b) for forced vibrations, (A) = jQ
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Thus, the statement about the eigenvalue as the parameter
of the Holzer table in the case of free vibrations has been
proved. It holds generally, i.e., for both damped and un-
damped systems (in the case of free vibrations). However,
with the undamped systems both the eigenvalue and the
tables themselves degenerate (s; = u; = 0 so that h = 0 and
instead of wp there is w,). Consequently, in this special case
of the general case the frequency may be (only practically!)
considered as the parameter of the table. Theoretically,
the parameter of the Holzer table in the case of free vibrations
is only the eigenvalue irrespective of whether the system is
damped or undamped.

Numerical Example

It is required that the eigenvalues of the first oscillatory
mode 1A, be calculated for the torsional system of the fol-
lowing characteristics: J( = 1, J» = 2, J3 = 3 (Ib-in.-sec?),
s = 012, s, = 0.20, s3 = 0.32 (Ib-in.-sec.), by = L, by = &
(Ib-in./rad), u; = 0, us = 0.04 (Ib-in.-sec).

Table 2 Complex Holzer table for the calculation of
damped linear systems; parameters: a) for free vibrations,
A = jh & wp, and b) for forced vibrations, (A) = Q
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The eigenvalues of the system can be evaluated by the trial-
and-error procedure by means of either Table 1 or Table 2
(assumption of 7 and wp, i.e., of the eigenvalue A in correct
form for the given table, calculation of the table, and drawing
of the remainder-torque curve until the remainder torque
becomes zero).

The resulting simple Holzer table for the eigenvalue of the
first oscillatory mode 1A;, = —0.0626773 = j 0.4960997
is shown here as Table 3. (Hence, the damped natural fre-

T Practically, the numerical values in both simple and complex
Holzer tables are the same and complex because the parameters
are complex in both cases.

TECHNICAL NOTES AND COMMENTS 967

Table 3 Simple Holzer table calculated for 1A, =
—0.0626773 == j 0.4960997 (see numerical example)

2
- 385 A),
2 2 2, ZE N sy
3| = IA- s A 4, (- 9 A~ [ROLAPICI N A % kv uA _(__—T-—ki o
1 | 0.2457078 +| 1.0 0.2497078 + 0.2497078 + 1/3 0,7491233 «
j 0.0026564 j 0.0026564 j 0.0026584 j 0.0079693
2 | 0.4969084 +| 0.2508767 - | 0.1248632 + 0.3745710 + 0.4974929 + | 0.7521221 —
J 0.0251568| j0.0079693 | j 0.0023513 J 0.0080077 J D.0198440 | j 0.0199348
3 | 0.7466162 +(-0.5012454 + | -0.3745710 -~ | 0,0000000 +
j 0.0278133] j 0.0119655| j 0.0050077 | j 0,0000000

quency of the first mode is wp = 0.4960997 sec™; the un-
damped natural frequency of the first mode, calculated sepa-
rately, is jw, = 0.5 sec™.) It should be noticed that Table
3 for eigenvalue is “closed” (remainder torque is zero) as
it has to be.

In the case of forced vibrations of damped systems, the
headings of both simple and complex Holzer tables remain
as they are. In principle, the corresponding forms of the
parameters hold in this case as well, except for o = 0. Thus,
the simple Holzer table has to be calculated with the forcing
frequency in the form jQ and the complex one with that fre-
quency in the form @, where = forcing frequency.{

The use of the damped-system Holzer tables for the calcula-
tion of both eigenvalues and eigenvectors of damped systems
has been discussed fully in Refs. 1 and 2.
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1 Hence, the incomplete view (that of the frequency as param-
eter of the Holzer table) is admissible in the case of forced vibra-
tions calculated by the complex Holzer table. In all other cases
(forced vibrations by the simple Holzer table, free vibrations by
both tables), it induces the adoption of wrong procedures. On
the other hand, only the eigenvalues of the simple Holzer table
conform with the usual assumption that the ‘“‘imaginary part
of the eigenvalue is the natural frequency.”’

Systematic Matrix Calculation of
Similarity Numbers

Vicror J. SkogLUND*
Unaversity of New Mexico, Albuquerque, N. Mez.

ECAUSE the dimensions of any macroscopic variable u;
are of the form

fu;} = Dy DI D Dss (1)

where D, is mass, D» length, D; time, D, temperature, and
ai; a positive or negative integer or fraction, the dimensions
of a set of variables uy, . . . 4, may be represented by a dimen-
sional matrix |ja;;]|, where 7 indicates the dimension or row
number and j indicates the variable or column number. By
definition, a similarity number is a nondimensional product
of variables of the form

N = " w,® ... u,™ (2)
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To satisfy the nondimensional requirement of N, e; must
satisfy a set of linear, homogeneous equations

n
Z Qi; €, = 0
j=1

In solving these equations for e; in a systematic manner, it
is convenient to transform the dimensional matrix to a uni-
tized form by the following operations: 1) interchanging
rows, 2) multiplying a row by a nonzero constant, 3) adding
one row to another, and 4) if necessary, interchanging
columns.

As a result, the number of rows in the unitized form
may be less than in the dimensional matrix. A unitized
matrix with four rows is of the form

1 0 0 O .. by
0 1 0 0 .. by

[[bsil = b0 1 0 .. B 3
0 0 0 1 oo by

Since the foregoing row and column operations also may be
applied to the equations of exponents without affecting their
results, the unitized matrix may be used to form a new set of
equations: '

Zbijej:()

j=1

By matrix theory, the number of independent equations of
such a set equals the number of nonzero rows in the uni-
tized matrix. That number also equals the rank of the
matrix. Therefore, with r nonzero rows, e;, . . . e, may be
considered dependent, and e.+1, . . . ¢, may be considered
independent. The exponents e;: of a single similarity num-
ber N may be obtained by letting one of the independent
exponents ¢, = 1 and letting the other independent ex-
ponents equal zero. The result is

Ni = w% w™ . w% @

The possibilities for k are k = 1, ... (n — r). Therefore,
a principle of dimensional analyses is that the number of
similarity numbers in a set is s = n — r, where n and r are
the number of columns and rows in the unitized dimensional
matrix.

Influence of Constant Disturbing
Torques on the Motion of Gravity-
Gradient Stabilized Satellites

T. B. GArRBER*
Rand Corporation, Santa Monica, Calif.

HE conditions under which a body subject to gravita-

tional-gradient torques will perform stable oscillations
about an equilibrium point are well known.t 2 However,
in most practical cases, torques other than those due to the
gravity gradient will act on the satellite.* The purpose of
this note i to demonstrate the effect of a constant disturbing
torque upon the transient response of a gravity-gradient
stabilized body.
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Fig. 1 Orientation of body axes with respect to orbital
local horizontal coordinates

It is assumed that the satellite is on a circular orbit.
Thus the oblateness and other asymmetries of the earth are
neglected. The only torques that act on the body are those
due to the gravity gradient and the constant disturbance.

Euler’s rotational equations of motion are

0.)z - szywz = (Mm/lz)G + (MI/II)D (13’)
oy — Ryw.w, = (My/L)e + (My/I)p (1b)
w, — R,y = (M./I.)e + (M./1.)p (1e)

where
R, = (I, — L)/,
R, = (.—I)/1,
R. = U.— 1)/,

The subseript G refers to the gradient torque, whereas D indi-
cates a disturbing torque. From the form of Eqs. (1a—lc), it
can be seen that the z y 2 axes are central principal axes.

The orientation of the body with respect to the local
horizontal coordinates is defined by the angles a, 8, and ¢
(see Fig. 1). In terms of the orientation angles and their
derivatives, the body angular rates are

w, = ¢ + (& + 0) sinf (2a)
w, = Bsing + (& 1+ 8) cosB cose (2b)
ws = B eose — (& + ) cosB sing (2¢)

where 6 is the angular rate of the local horizontal axes due
to the orbital motion. Finally, the gravitational-gradient
torques are*

(MZ/Ix)G

—362R,(sine cose + cosa sinf sing) X
(sine sing — cosa sinf cose) (3a)

(M,/1,)e = —362R, cosa cosB(sina cose -+
cosa sinf3 sing) (3b)

(M./1)e = —30°R, cosa cosB(sina sing —
cosa sinf cosg) (3c¢)

Consider the case in which there is a steady state pitch
angle. Such a condition might arise physically due to
residual drag forces acting in conjunction with a center-of-
mass, center-of-pressure separation. Thus a steady-state
value of « develops until the gradient torque is equal to the
disturbance in magnitude.



